Small Business Innovation Research/Small Business Tech Transfer

Manufacture of Free-Form Optical Surfaces with Limited Mid-Spatial Frequency Error, Phase I

Completed Technology Project (2014 - 2014)

Project Introduction

Our proposed innovation is a robust manufacturing process for free-form optical surfaces with limited mid-spatial frequency (MSF) irregularity error. NASA and many others have a direct and critical need for high quality freeform optical components. Free-forms can improve the optical performance of many types of optical systems when compared to aspheres. MSF error is a major concern with free-form optics as the standard method for manufacturing free-forms (sub-aperture tool polishing) can lead directly to large MSF error. Simply, MSF error is a height error on the surface in the spatial regime between roughness (micro) and irregularity (macro). MSF errors dramatically degrade performance in optical systems. Our free-form manufacturing process is differentiated by full-aperture polishing step, called VIBE, and by the proposed smoothing step. The VIBE step does not create MSF error as the sub-aperture process does. The smoothing step will reduce any inherent MSF error. In this manner, we will manufacture free-form optical surfaces without MSF errors. Our technical objectives are three fold: 1) Determine most feasible smoothing parameters, 2) Determine feasibility of smoothing for freeforms for reduced mid-spatial frequency error, and 3) Determine the effectiveness of using a computer generated hologram (CGH) for free-form measurements. To accomplish these objectives we have set out the following work plan. First we will design the free-form surface and the associated CGH (with feature for easy alignment). Next, we will perform a study on smoothing to determine the optimized smoothing parameters to remove mid-spatial frequency errors on free-form surfaces. Then, we will manufacture precision free-form surfaces using the optimized parameters. During each step in the manufacturing process (generation, VIBE polishing, smoothing, sub-aperture figure correction, and something) we evaluate both the irregularity and midspatial frequency errors.

Manufacture of Free-Form Optical Surfaces with Limited Mid-Spatial Frequency Error, Phase I

Table of Contents

Donald and Tackers described	-
Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	2
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Manufacture of Free-Form Optical Surfaces with Limited Mid-Spatial Frequency Error, Phase I

Completed Technology Project (2014 - 2014)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Optimax Systems, Inc.	Lead Organization	Industry	Ontario, New York
Marshall Space Flight Center(MSFC)	Supporting Organization	NASA Center	Huntsville, Alabama

Primary U.S. Work Locations	
Alabama	New York

Project Transitions

0

June 2014: Project Start

December 2014: Closed out

Closeout Summary: Manufacture of Free-Form Optical Surfaces with Limited M id-Spatial Frequency Error, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/137652)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Optimax Systems, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Katherine M Medicus

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Manufacture of Free-Form Optical Surfaces with Limited Mid-Spatial Frequency Error, Phase I

Completed Technology Project (2014 - 2014)

Images

Briefing Chart Image

Manufacture of Free-Form Optical Surfaces with Limited Mid-Spatial Frequency Error, Phase I (https://techport.nasa.gov/imag e/132719)

Technology Areas

Primary:

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

